首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of Potassium Channels in Facilitation of Transmitter Release from Frog Motor Nerve Ending (Electrophysiology and Mathematical Simulation)
Authors:Zefirov  A L  Mukhamed'yarov  M A  Gafurov  B Sh
Institution:(1) Kazan' State Medical University, Republic of Tatarstan, Russia
Abstract:In experiments on neuromuscular junctions in the frog m. thoraco-cutaneous, we studied changes in the transmitter release and shape of the nerve ending (NE) response related to high-frequency (10 or 50 sec-1) rhythmic stimulation of the motor nerve; an extracellular recording technique was used. At a low extracellular Ca2+ concentration, rhythmic stimulation resulted in a gradual increase in the quantum content of end-plate currents, i.e., in facilitation. Simultaneously, the third (positive) phase of the NE response became smaller, the amplitude of the second (negative) phase of this response also decreased, while the duration of this phase increased. Modifications of the NE response upon stimulation with a 10 sec-1 frequency were more clearly expressed than those at 50 sec-1 stimulation. In Ca2+-free solutions, rhythmic stimulation was accompanied by analogous modifications of the shape of NE responses, and the dynamics of these changes were the same at both the above-mentioned stimulation frequencies. When 0.5-1.0 mM tetraethylammonium was applied, 10 sec-1 stimulation was accompanied by no facilitation of transmitter release; at 50 sec-1 stimulation, this phenomenon was observed but was weaker than in the control, and the shape of NE responses underwent only mild changes. Simulation of electrogenesis in the studied structure showed that modifications of the NE response shape related to rhythmic 10 sec-1 stimulation can develop in the case of a gradual decrease in the voltage-dependent potassium membrane conductivity, which results in prolongation of the de- and repolarization phases of action potentials and increases in the amplitude and duration of the inward calcium current. At higher stimulation frequencies (50 sec-1), this mechanism is accompanied by a gradual increase in the Ca2+-dependent potassium conductivity, due to an increase in the intracellular Ca2+ concentration. These data allow us to conclude that the intensity of facilitation of transmitter release from the frog motor NE is related not only to accumulation of ldquoresidualrdquo calcium, but also to changes of presynaptic calcium current due to modification of the kinetics of functioning of the potassium channels.
Keywords:synaptic transmission  facilitation  nerve ending  potassium channels  calcium current
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号