Abstract: | Pseudobactin production by Pseudomonas putida WCS358 significantly improves biological control of fusarium wilt caused by nonpathogenic Fusarium oxysporum Fo47b10 (P. Lemanceau, P. A. H. M. Bakker, W. J. de Kogel, C. Alabouvette, and B. Schippers, Appl. Environ. Microbiol. 58:2978-2982, 1992). The antagonistic effect of Fo47b10 and purified pseudobactin 358 was studied by using an in vitro bioassay. This bioassay allows studies on interactions among nonpathogenic F. oxysporum Fo47b10, pathogenic F. oxysporum f. sp. dianthi WCS816, and purified pseudobactin 358, the fluorescent siderophore produced by P. putida WCS358. Both nonpathogenic and pathogenic F. oxysporum reduced each other's growth when grown together. However, in these coinoculation experiments, pathogenic F. oxysporum WCS816 was relatively more inhibited in its growth than nonpathogenic F. oxysporum Fo47b10. The antagonism of nonpathogenic F. oxysporum against pathogenic F. oxysporum strongly depends on the ratio of nonpathogenic to pathogenic F. oxysporum densities: the higher this ratio, the stronger the antagonism. This fungal antagonism appears to be mainly associated with the competition for glucose. Pseudobactin 358 reduced the growth of both F. oxysporum strains, whereas ferric pseudobactin 358 did not; antagonism by pseudobactin 358 was then related to competition for iron. However, the pathogenic F. oxysporum strain was more sensitive to this antagonism than the nonpathogenic strain. Pseudobactin 358 reduced the efficiency of glucose metabolism by the fungi. These results suggest that pseudobactin 358 increases the intensity of the antagonism of nonpathogenic F. oxysporum Fo47b10 against pathogenic F. oxysporum WCS816 by making WCS816 more sensitive to the glucose competition by Fo47b10. |