首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Low velocity gradient flow birefringence and viscosity changes in hyaluronate solutions as a function of pH.
Authors:T W Barrett  R E Harrington
Abstract:The flow birefringence and extinction angle over a velocity gradient range of approximately 5–100 sec?1, and the zero shear-viscosity have been obtained from human umbilical cord hyaluronic acid at concentrations of 0.25, 0.125 and 0.0625%, and pHs 6.0, 6.5, 7.0, 7.5, 8.0, and 8.5 and constant ionic strength 0.1. The data indicate a large change in optical anisotropy as a function of pH, with most of the transition in the pH range 7.0–7.5, i.e., across the physiological range. The sign of the anisotropy changes between pH 8.0 and 8.5. These results, together with changes in the extinction angle and intrinsic viscosity as a function of pH, suggest a pH-dependent structural change in the system. Due to the abruptness of the transition, as evidenced by the intrinsic viscosity and flow birefringence, it is probable that the structural transition is cooperative. If the data are interpreted in terms of the Rouse-Zimm Gaussian subchain theory, a modification of the model in terms of the Haller-Cerf concept of internal viscosity is required. Thus, the demonstrated properties of hyaluronate solutions indicate a system with memory of stress. Due to the presence of large concentration effects discernible in the extinction angle measurements, hyaluronic acid probably exists as a network in solution. The results are discussed with respect to the mechanoelectrical transducing properties of hyaluronates and stress-dependent changes in ORD already reported.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号