首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Strain‐Based In Situ Study of Anion and Cation Insertion into Porous Carbon Electrodes with Different Pore Sizes
Authors:Jennifer M Black  Guang Feng  Pasquale F Fulvio  Patrick C Hillesheim  Sheng Dai  Yury Gogotsi  Peter T Cummings  Sergei V Kalinin  Nina Balke
Institution:1. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA;2. Chemical & Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA;3. Chemical Sciences Division Oak Ridge National Laboratory, Oak Ridge, TN, USA;4. Department of Chemistry University of Tennessee, Knoxville, TN, USA;5. Department of Materials Science and Engineering and A. J. Drexel Nanotechnology Institute Drexel University, Philadelphia, PA, USA
Abstract:The expansion of porous carbon electrodes in a room temperature ionic liquid (RTIL) is studied using in situ atomic force microscopy (AFM). The effect of carbon surface area and pore size/pore size distribution on the observed strain profile and ion kinetics is examined. Additionally, the influence of the potential scan rate on the strain response is investigated. By analyzing the strain data at various potential scan rates, information on ion kinetics in the different carbon materials is obtained. Molecular dynamics (MD) simulations are performed to compare with and provide molecular insights into the experimental results; this is the first MD work investigating the pressure exerted on porous electrodes under applied potential in a RTIL electrolyte. Using MD, the pressure exerted on the pore wall is calculated as a function of potential/charge for both a micropore (1.2 nm) and a mesopore (7.0 nm). The shape of the calculated pressure profile matches closely with the strain profiles observed experimentally.
Keywords:electrochemical capacitors  atomic force microscopy  molecular dynamics  ionic liquids
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号