首页 | 本学科首页   官方微博 | 高级检索  
     


Thermodynamic Aspects of Cathode Coatings for Lithium‐Ion Batteries
Authors:Muratahan Aykol  Scott Kirklin  C. Wolverton
Affiliation:Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
Abstract:Metal oxide cathode coatings are capable of scavenging the hydrofluoric acid (HF) (present in LiPF6‐based electrolytes) and improving the electrochemical performance of Li‐ion batteries. Here, a first‐principles thermodynamic framework is introduced for designing cathode coatings that consists of four elements: i) HF‐scavenging enthalpies, ii) volumetric and iii) gravimetric HF‐scavenging capacities of the oxides, and iv) cyclable Li loss into coating components. 81 HF‐scavenging reactions involving binary s‐, p‐ and d‐block metal oxides and fluorides are enumerated and these materials are screened to find promising coatings based on attributes (i‐iv). The screen successfully produces known effective coating materials (e.g., Al2O3 and MgO), providing a validation of our framework. Using this design strategy, promising coating materials, such as trivalent oxides of d‐block transition metals Sc, Ti, V, Cr, Mn and Y, are predicted. Finally, a new protection mechanism that successful coating materials could provide by scavenging the wide bandgap and low Li ion conductivity LiF precipitates from the cathode surfaces is suggested.
Keywords:lithium‐ion batteries  materials screening  coatings  electrochemical performance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号