首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Solution‐Processed Hydrogen Molybdenum Bronzes as Highly Conductive Anode Interlayers in Efficient Organic Photovoltaics
Authors:Anastasia Soultati  Antonios M Douvas  Dimitra G Georgiadou  Leonidas C Palilis  Thomas Bein  Johann M Feckl  Spyros Gardelis  Mihalis Fakis  Stella Kennou  Polycarpos Falaras  Thomas Stergiopoulos  Nikolaos A Stathopoulos  Dimitris Davazoglou  Panagiotis Argitis  Maria Vasilopoulou
Institution:1. Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems (IAMPPNM), National Center for Scientific Research “Demokritos”, Athens, Greece;2. Department of Physics, University of Patras, Patras, Greece;3. Department of Chemistry and Center for Nanoscience (CeNS), Ludwig‐Maximilians‐Universit?t München, Germany;4. Department of Chemical Engineering, University of Patras, Patras, Greece;5. Department of Electronics, Technological Educational Institute (TEI) of Piraeus, Aegaleo, Greece
Abstract:Highly efficient and stable organic photovoltaic (OPV) cells are demonstrated by incorporating solution‐processed hydrogen molybdenum bronzes as anode interlayers. The bronzes are synthesized using a sol‐gel method with the critical step being the partial oxide reduction/hydrogenation using an alcohol‐based solvent. Their composition, stoichiometry, and electronic properties strongly correlate with the annealing process to which the films are subjected after spin coating. Hydrogen molybdenum bronzes with moderate degree of reduction are found to be highly advantageous when used as anode interlayers in OPVs, as they maintain a high work function similar to the fully stoichiometric metal oxide, whereas they exhibit a high density of occupied gap states, which are beneficial for charge transport. Enhanced short‐circuit current, open‐circuit voltage and, fill factor, relative to reference devices incorporating either PEDOT‐PSS or a solution processed stoichiometric molybdenum oxide, are obtained for a variety of bulk heterojunction mixtures based on different polymeric donors and fullerene acceptors. In particular, high power conversion efficiencies are obtained in devices that employed the s‐HxMoO2.75 as the hole extraction layer.
Keywords:solution   processing  metal oxides  hydrogen molybdenum bronzes  anode interlayers  organic photovoltaics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号