首页 | 本学科首页   官方微博 | 高级检索  
     


Oxygen Ion Diffusion and Surface Exchange Properties of the α‐ and δ‐phases of Bi2O3
Authors:Ryan D. Bayliss  Sakis Kotsantonis  Richard J. Chater  John A. Kilner
Affiliation:Department of Materials, Imperial College London, UK
Abstract:Fast oxide ion conduction is a highly desirable property for materials in a wide range of applications. The fastest reported ionic conductor, representing the current state of the art and an oft‐proposed effective limit of oxide ion conductivity, is the high temperature fluorite‐structured δ phase of Bi2O3. Here, the ionic nature of this conduction is, for the first time, directly determined through oxygen tracer diffusion measurements. This phase also presents a remarkably high oxygen surface exchange coefficient, competitive with the highest performance solid oxide fuel cell (SOFC) cathodes yet counterintuitively in a material with negligible electronic conduction. The low temperature α‐Bi2O3 polymorph is also investigated, revealing a remarkable drop in diffusivity of over 7 orders of magnitude with a temperature drop of just ≈150 °C. Surprisingly, the diffusion studies also reveal a secondary, significantly faster migration pathway in the α phase. This is attributed to grain boundary conduction and shown to be 3–4 orders of magnitude higher than in the bulk. This previously unobserved property could present an exciting opportunity to tailor ionic conductivity levels through manipulating microstructure down to the nanoscale.
Keywords:bismuth oxide  oxide ion conductors  tracer diffusion coefficients  fuel cells  surface exchange
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号