Short-term aluminium uptake by tobacco cells: Growth dependence and evidence for internalization in a discrete peripheral region |
| |
Authors: | Victor A. Vitorello Alfred Haug |
| |
Affiliation: | Dept of Botany and Plant Pathology, Michigan State Univ., East Lansing, MI 48824, USA;Dept of Microbiology, Michigan State Univ., East Lansing, MI 48824, USA |
| |
Abstract: | Short-term uptake and initial localization of aluminium (Al) were investigated in cultured cells of Nicotiana tabacum L. cv. BY-2. Graphite furnace atomic absorption spectrometry and an in vivo Al-sensitive fluorometric assay, employing morin, yielded similar results in all experiments. Aluminium uptake was critically dependent on cell growth. As opposed to negligible uptake in stationary-phase cells, Al uptake (20 μ M AlCl3, pH 4.5, 23°C) by actively growing cells was detectable within 5 min, with an initial rate of 16 nmol Al (106 cells)−1 h−1. Increased CaCl2 levels (up to 20 m M ), low temperature (4°C), and pre-chelation of Al to citrate greatly reduced Al uptake (by 75–90%). A pH-associated permeabilization of cells at pH 4.5, as monitored by trypan blue, was observed in some growing cells. Although permeability to trypan blue was not a requirement for Al uptake, enhanced membrane permeability at pH 4.5, relative to pH 5.6, may contribute to Al uptake. Aluminium was observed to localize mainly in a pronounced and discrete fluorescent zone at the cell periphery (2–30 μm wide), presumably in the cortical cytosol and/or the adjoining plasma membrane section, although the possibility cannot be excluded that some Al resided in the cell wall apposing this discrete region. However, as judged by the Al-morin assay, there were no detectable Al levels in the remaining, larger portion of the cell wall. The potential of the Al-morin method in Al toxicity studies is illustrated. |
| |
Keywords: | Aluminium localization aluminium uptake cell suspension culture fluorometric assay growth phase morin Nicotiana tabacum tobacco |
|
|