Differences in species richness and life-history traits between grazed and abandoned grasslands in southern Sweden |
| |
Authors: | Cecilia Dupré ,Martin Diekmann |
| |
Affiliation: | C. Dupré() and M. Diekmann, Dept of Plant Ecology, Evolutionary Biology Centre, Uppsala Univ., Villavägen 14. SE-752 36 Uppsala, Sweden |
| |
Abstract: | Disturbance has profound effects on plant community composition. This paper deals with the influence of grazing on species richness and proportions of life‐history attributes of grassland vegetation at six spatial scales (0.001–1000 m2) in two provinces of southern Sweden. The study comprised 33 dry grassland sites, including 22 grazed and 11 abandoned localities, and 28 sites of coastal brackish meadows, divided into five management types (from “heavily grazed” to “abandoned since long time”). In general grazed sites were species‐richer than abandoned sites, especially at small plot sizes. However, there was a steeper increase in species number towards larger plot sizes in the abandoned sites. Heavy grazing in the coastal meadows resulted in a comparatively low number of species, corroborating the intermediate disturbance hypothesis. The analysis of life‐history traits indicated the importance of taxonomic group, canopy structure, height, regenerative strategy and, in particular, life form. Leaf anatomy and seed dispersal seemed to be less important. The responses to grazing as regards species traits differed somewhat between grassland types. Grazed sites generally had high proportions of legumes, therophytes, species with basal position of leaves and with regeneration by means of a persistent seed bank. Abandonment of grazing favoured monocots, geophytes, species with vegetative regeneration and (partly) leafy canopy structure. Some differences between grazed and abandoned sites were confined to either the smallest or largest plot sizes, indicating different responses of matrix and interstitial species. Various positive associations (attribute syndromes) or negative associations between individual traits were identified. There was, for example, a positive link between the attributes “geophytes” and “ability of vegetative regeneration”. The recognition of such links is important to avoid misinterpreting certain attributes as functional adaptations to grazing while they are only positively correlated to other attributes of larger significance. |
| |
Keywords: | |
|
|