首页 | 本学科首页   官方微博 | 高级检索  
     


Distance dependent centroid to centroid force fields using high resolution decoys
Authors:Rajgaria R  McAllister S R  Floudas C A
Affiliation:Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA.
Abstract:Simplified force fields play an important role in protein structure prediction and de novo protein design by requiring less computational effort than detailed atomistic potentials. A side chain centroid based, distance dependent pairwise interaction potential has been developed. A linear programming based formulation was used in which non-native "decoy" conformers are forced to take a higher energy compared with the corresponding native structure. This model was trained on an enhanced and diverse protein set. High quality decoy structures were generated for approximately 1400 nonhomologous proteins using torsion angle dynamics along with restricted variations of the hydrophobic cores of the native structure. The resulting decoy set was used to train the model yielding two different side chain centroid based force fields that differ in the way distance dependence has been used to calculate energy parameters. These force fields were tested on an independent set of 148 test proteins with 500 decoy structures for each protein. The side chain centroid force fields were successful in correctly identifying approximately 86% native structures. The Z-scores produced by the proposed centroid-centroid distance dependent force fields improved compared with other distance dependent C(alpha)-C(alpha) or side chain based force fields.
Keywords:force field  potential model  high resolution decoys  protein structure prediction  linear optimization  protein design potential
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号