首页 | 本学科首页   官方微博 | 高级检索  
     

海洋浮游植物丰度的空间插值优化
引用本文:林琳,李纯厚,戴明,蔡文贵,林钦. 海洋浮游植物丰度的空间插值优化[J]. 生态学报, 2007, 27(7): 2880-2888
作者姓名:林琳  李纯厚  戴明  蔡文贵  林钦
作者单位:1. 中国水产科学研究院南海水产研究所,广东,广州,510300;上海水产大学,上海,200090
2. 中国水产科学研究院南海水产研究所,广东,广州,510300
基金项目:科技部科研院所社会公益研究专项基金;广东省科技攻关项目
摘    要:在探索性空间数据分析(Exploratory spatial data analysis)和数据转化的基础上,利用反距离加权(Inverse distance weighting,IDW)、径向基函数(Radial basis functions,RBF)、普通克里格(Ordinary Kriging,OK),3种插值方法,对2003年8月获得的珠江口浮游植物丰度数据进行插值运算,并对插值准确度进行交叉验证。结果显示,珠江口浮游植物丰度数据具有离散性大、存在极大和极小值、呈正偏分布等特点。而对数转化能大大减小数据的离散性和不对称性,有效消除插值结果图中各类插值噪音。交叉验证显示,插值精确度OK最高,RBF次之,IDW最低。观察插值结果等值面图,发现3种方法均能较客观地模拟出浮游植物丰度的总体分布趋势,在对局部趋势的模拟上,OK的表现最好。综合评定,OK为最适合珠江口浮游植物丰度数据的插值方法。半变异模型的选择对OK的插值结果影响不明显。在四种半变异模型中,圆形模型的拟合效果最好。

关 键 词:空间插值  浮游植物丰度  优化
文章编号:1000-0933(2007)07-2880-09
收稿时间:2006-07-19
修稿时间:2006-07-192007-05-16

Optimization of the spatial interpolation for marine phytoplankton abundance
LIN Lin,LI Chunhou,DAI Ming,CAI Wengui and LIN Qin. Optimization of the spatial interpolation for marine phytoplankton abundance[J]. Acta Ecologica Sinica, 2007, 27(7): 2880-2888
Authors:LIN Lin  LI Chunhou  DAI Ming  CAI Wengui  LIN Qin
Affiliation:1 South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; 2 Shanghai Fisheries University, Shanghai 200090, China
Abstract:To understand the spatial interpolation optimization laws of marine phytoplankton abundance, we compared three different methods of spatial interpolation: (1) inverse distance weighting (IDW), (2) radial basis functions (RBF) and (3) Ordinary Kriging (OK), using the recorded phytoplankton abundance in the Zhujiang Estuary, China, in August 2003. Firstly, exploratory spatial data analysis was used to gain a deeper understanding of the recorded phytoplankton abundance. Then the phytoplankton abundance was log-transformed. Lastly, we generated interpolation surfaces of phytoplankton biomass using the three interpolation methods. The results indicate that the phytoplankton abundance data is charactered by high dispersion, with a few outliers, and a positively skewed distribution. The log-transformation reduces the variances and skewed distribution, and effectively removes various interpolation noises in the interpolation surfaces. The accuracy of the OK is the highest, followed by the RBF, and then the IDW. The interpolation surfaces reveal that all of the three methods correctly show general trends of the phytoplankton abundance by using a series of optimization techniques. But the contours generated by the IDW always bend around the global outliers with excessively great curvature and sometimes even form closed small loops, which maybe cause some interference in identifying the general trends. The contours generated by the RBF are excessively smooth. However, it represents the general trends clearly, although many local trends are lost. The contours generated by the OK are considered the best, as the method can represent both general and local trends accurately. Thus, the OK method is more efficient than RBF and IDW in terms of accuracy and surface representation. The four semi-variance models of the OK do not affect the interpolation results, with the circular model having the best fit to the data.
Keywords:spatial interpolation  phytoplankton abundance  optimization
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《生态学报》浏览原始摘要信息
点击此处可从《生态学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号