Stability of the unique anticodon loop conformation of E.coli tRNAfMet. |
| |
Authors: | P Wrede and A Rich |
| |
Abstract: | Initiator tRNAs have an anticodon loop conformation distinct from that of elongation tRNAs as detected by susceptibility to S1 nuclease. We now find the anticodon loop conformation of E. coli tRNAfMet to be stable under different salt conditions as detected by using S1 nuclease as a structural probe. In contrast, a conformational change is observed in the T- and D- loop of this tRNA in the absence of added Mg2+. This change can be suppressed by spermine. Even under those conditions effecting a change in T- and D- loop conformation, the anticodon loop does not change. This suggests that the conformational shift is controlled by Mg2+ and restricted to the D- and T- loop region only without affecting the anticodon domain. The use of S1 nuclease as a conformational probe requires the use of kinetic studies to determine the initial cleavage sites. Thus, the use of a strong inhibitor which immediately stops the action of this nuclease is necessary. ATP is shown to be such an inhibitor. |
| |
Keywords: | |
|
|