首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The CoxD Protein,a Novel AAA+ ATPase Involved in Metal Cluster Assembly: Hydrolysis of Nucleotide-Triphosphates and Oligomerization
Authors:Tobias Maisel  Stephanie Joseph  Thorsten Mielke  J?rg Bürger  Stephan Schwarzinger  Ortwin Meyer
Institution:1. Chair of Microbiology, University of Bayreuth, Bayreuth, Germany.; 2. Max-Planck-Institute for Molecular Genetics, Berlin, Germany.; 3. Charité-Universitätsmedizin Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany.; 4. Chair of Biopolymers, University of Bayreuth, Bayreuth, Germany.; 5. The Bayreuth Research Center for Bio-Macromolecules, Bayreuth, Germany.; University of Cambridge, United Kingdom,
Abstract:CoxD of the α-proteobacterium Oligotropha carboxidovorans is a membrane protein which is involved in the posttranslational biosynthesis of the CuSMoO2] cluster in the active site of the enzyme CO dehydrogenase. The bacteria synthesize CoxD only in the presence of CO. Recombinant CoxD produced in E. coli K38 pGP1-2/pETMW2 appeared in inclusion bodies from where it was solubilized by urea and refolded by stepwise dilution. Circular dichroism spectroscopy revealed the presence of secondary structural elements in refolded CoxD. CoxD is a P-loop ATPase of the AAA-protein family. Refolded CoxD catalyzed the hydrolysis of MgATP yielding MgADP and inorganic phosphate at a 1∶1∶1 molar ratio. The reaction was inhibited by the slow hydrolysable MgATP-γ-S. GTPase activity of CoxD did not exceed 2% of the ATPase activity. Employing different methods (non linear regression, Hanes and Woolf, Lineweaver-Burk), preparations of CoxD revealed a mean KM value of 0.69±0.14 mM ATP and an apparent Vmax value of 19.3±2.3 nmol ATP hydrolyzed min−1 mg−1. Sucrose density gradient centrifugation and gel filtration showed that refolded CoxD can exist in various multimeric states (2-mer, 4-mer or 6-mer), preferentially as hexamer or dimer. Within weeks the hexamer dissociates into the dimer, a process which can be reversed by MgATP or MgATP-γ-S within hours. Only the hexamers and the dimers exhibited MgATPase activity. Transmission electron microscopy of negatively stained CoxD preparations revealed distinct particles within a size range of 10–16 nm, which further corroborates the oligomeric organization. The 3D structure of CoxD was modeled with the 3D structure of BchI from Rhodobacter capsulatus as template. It has the key elements of an AAA+ domain in the same arrangement and at same positions as in BchI and displays the characteristic inserts of the PS-II-insert clade. Possible functions of CoxD in CuSMoO2] cluster assembly are discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号