首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Silencing of MicroRNA-21 Confers Radio-Sensitivity through Inhibition of the PI3K/AKT Pathway and Enhancing Autophagy in Malignant Glioma Cell Lines
Authors:Ho-Shin Gwak  Tae Hoon Kim  Guk Heui Jo  Youn-Jae Kim  Hee-Jin Kwak  Jong Heon Kim  Jinlong Yin  Heon Yoo  Seung Hoon Lee  Jong Bae Park
Institution:1. Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea.; 2. Cancer Cell and Molecular Biology Branch, Research Institute and Hospital, National Cancer Center, Goyang, Korea.; University Hospital Hamburg-Eppendorf, Germany,
Abstract:Radiation is a core part of therapy for malignant glioma and is often provided following debulking surgery. However, resistance to radiation occurs in most patients, and the underlying molecular mechanisms of radio-resistance are not fully understood. Here, we demonstrated that microRNA 21 (miR-21), a well-known onco-microRNA in malignant glioma, is one of the major players in radio-resistance. Radio-resistance in different malignant glioma cell lines measured by cytotoxic cell survival assay was closely associated with miR-21 expression level. Blocking miR-21 with anti-miR-21 resulted in radio-sensitization of U373 and U87 cells, whereas overexpression of miR-21 lead to a decrease in radio-sensitivity of LN18 and LN428 cells. Anti-miR-21 sustained γ-H2AX DNA foci formation, which is an indicator of double-strand DNA damage, up to 24 hours and suppressed phospho-Akt (ser473) expression after exposure to γ-irradiation. In a cell cycle analysis, a significant increase in the G2/M phase transition by anti-miR-21 was observed at 48 hours after irradiation. Interestingly, our results showed that anti-miR-21 increased factors associated with autophagosome formation and autophagy activity, which was measured by acid vesicular organelles, LC3 protein expression, and the percentage of GFP-LC3 positive cells. Furthermore, augmented autophagy by anti-miR-21 resulted in an increase in the apoptotic population after irradiation. Our results show that miR-21 is a pivotal molecule for circumventing radiation-induced cell death in malignant glioma cells through the regulation of autophagy and provide a novel phenomenon for the acquisition of radio-resistance.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号