首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Temperature-induced lysis of chromaffin granules provides evidence against the two-pool hypothesis of catecholamine storage
Authors:T C Südhof  S J Morris
Abstract:The temperature-dependent release of core constituents from isolated chromaffin granules in isotonic sucrose has been a controversial and puzzling phenomenon that has been interpreted either as selective catecholamine efflux from different catecholamine pools or as temperature-dependent lysis. We have analysed the kinetics, temperature dependence and physical basis of this process. Our results demonstrate that, upon increasing the ambient temperature, chromaffin granules show a shift in their osmotic fragility to higher osmolarities, which is linearly dependent on temperature and leads to measurable lysis in 0.26 M buffered sucrose at temperatures above 12 degrees C. It is possible to demonstrate both protein and dopamine beta-hydroxylase release when lysis as a function of temperature is measured in 0.26 M buffered sucrose. Real time measurements of the lysis kinetics were recorded on cassettes and analysed by a computer program for exponential decay kinetics. It is shown that the temperature-dependent lysis proceeds in two separate phases, the fast one of which is associated with temperature-dependent shift in the osmotic fragility curve. It has no characteristics of any exponential decay kinetics. The slow phase, when followed over several hours, leads to complete lysis of the granules in a sigmoidal time course at 30 degrees C. We conclude from the absence of exponentiality that there is no basis on which to assume the existence of different catecholamine pools. The fast phase of temperature-dependent lysis can be best explained as a simple temperature-dependent increase of the granule core solution's osmotic pressure, while the slow phase is probably caused by sucrose permeation into the granules. On the basis of these results, we warn against any efflux experiments measuring the temperature-dependent transmitter release from secretory vesicles with highly concentrated core solutions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号