首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genomics and biochemistry investigation on the metabolic pathway of milled wood and alkali lignin-derived aromatic metabolites of <Emphasis Type="Italic">Comamonas serinivorans</Emphasis> SP-35
Authors:Daochen Zhu  Haibing Si  Peipei Zhang  Alei Geng  Weimin Zhang  Bin Yang  Wei-Jun Qian  Murillo Gabriel  Jianzhong Sun
Institution:1.Biofuels Institute, School of the Environment and Safety Engineering,Jiangsu University,Zhenjiang,China;2.State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology,Guangdong Institute of Microbiology,Guangzhou,China;3.Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering,Washington State University,Richland,USA;4.Biological Sciences Division and Environmental Molecular Sciences Laboratory,Pacific Northwest National Laboratory,Richland,USA
Abstract:

Background

The efficient depolymerization and utilization of lignin are one of the most important goals for the renewable use of lignocelluloses. The degradation and complete mineralization of lignin by bacteria represent a key step for carbon recycling in land ecosystems as well. However, many aspects of this process remain unclear, for example, the complex network of metabolic pathways involved in the degradation of lignin and the catabolic pathway of intermediate aromatic metabolites. To address these subjects, we characterized the deconstruction and mineralization of lignin with milled wood lignin (MWL, the most representative molecule of lignin in its native state) and alkali lignin (AL), and elucidated metabolic pathways of their intermediate metabolites by a bacterium named Comamonas serinivorans SP-35.

Results

The degradation rate of MWL reached 30.9%, and its particle size range was decreased from 6 to 30 µm to 2–4 µm—when cultured with C. serinivorans SP35 over 7 days. FTIR analysis showed that the C–C and C–O–C bonds between the phenyl propane structures of lignin were oxidized and cleaved and the side chain structure was modified. More than twenty intermediate aromatic metabolites were identified in the MWL and AL cultures based on GC–MS analysis. Through genome sequencing and annotation, and from GC–MS analysis, 93 genes encoding 33 enzymes and 5 regulatory factors that may be involved in lignin degradation were identified and more than nine metabolic pathways of lignin and its intermediates were predicted. Of particular note is that the metabolic pathway to form the powerful antioxidant 3,4-dihydroxyphenylglycol is described for the first time in bacteria.

Conclusion

Elucidation of the β-aryl ether cleavage pathway in the strain SP-35 indicates that the β-aryl ether catabolic system is not only present in the family of Sphingomonadaceae, but also other species of bacteria kingdom. These newly elucidated catabolic pathways of lignin in strain SP-35 and the enzymes responsible for them provide exciting biotechnological opportunities for lignin valorization in future.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号