首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ocean acidification and warming scenarios increase microbioerosion of coral skeletons
Authors:Catalina Reyes‐Nivia  Guillermo Diaz‐Pulido  David Kline  Ove‐Hoegh Guldberg  Sophie Dove
Institution:1. Australian Research Council Centre of Excellence for Coral Reef Studies, , St. Lucia, Queensland, 4072 Australia;2. School of Biological Sciences and Global Change Institute, University of Queensland, , St. Lucia, Queensland, 4072 Australia;3. Griffith School of Environment and Australian Rivers Institute – Coast & Estuaries, Griffith University, , Nathan, Queensland, 4111 Australia
Abstract:Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we exposed skeletons of the reef‐building corals, Porites cylindrica and Isopora cuneata, to present‐day (Control: 400 μatm – 24 °C) and future pCO2–temperature scenarios projected for the end of the century (Medium: +230 μatm – +2 °C; High: +610 μatm – +4 °C). Skeletons were also subjected to permanent darkness with initial sodium hypochlorite incubation, and natural light without sodium hypochlorite incubation to isolate the environmental effect of acidic seawater (i.e., Ωaragonite <1) from the biological effect of photosynthetic microborers. Our results indicated that skeletal dissolution is predominantly driven by photosynthetic microborers, as samples held in the dark did not decalcify. In contrast, dissolution of skeletons exposed to light increased under elevated pCO2–temperature scenarios, with P. cylindrica experiencing higher dissolution rates per month (89%) than I. cuneata (46%) in the high treatment relative to control. The effects of future pCO2–temperature scenarios on the structure of endolithic communities were only identified in P. cylindrica and were mostly associated with a higher abundance of the green algae Ostreobium spp. Enhanced skeletal dissolution was also associated with increased endolithic biomass and respiration under elevated pCO2–temperature scenarios. Our results suggest that future projections of ocean acidification and warming will lead to increased rates of microbioerosion. However, the magnitude of bioerosion responses may depend on the structural properties of coral skeletons, with a range of implications for reef carbonate losses under warmer and more acidic oceans.
Keywords:coral skeleton  dissolution  endolithic algae     Isopora     microbioerosion  ocean acidification and warming     Ostreobium        Porites   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号