首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and 1H NMR spectroscopic characterization of trans-[Pt(NH3)2[d(ApGpGpCpCpT)-N7-A(1),N7-G(3)]]
Authors:C A Lepre  K G Strothkamp  S J Lippard
Affiliation:Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139.
Abstract:The reaction of trans-[Pt(NH3)2Cl2] with the sodium salt of [d(ApGpGpCpCpT)]2 in aqueous solution at 37 degrees C was monitored by reversed-phase high-performance liquid chromatography and UV spectroscopy. Two intermediates, most likely monofunctional adducts, were observed, which subsequently formed one predominant single-stranded product, as well as several polymeric species proposed to be interstrand cross-linked products. The single-stranded adduct was structurally characterized by 1H NMR spectroscopy. From the pH dependence of the chemical shifts, two-dimensional homonuclear chemical shift correlation (COSY) spectroscopy, and one- and two-dimensional nuclear Overhauser effect (NOESY) experiments, the platinum(II) moiety was found to be coordinated to the N7 positions of adenine(1) and guanine(3), with the intervening guanine(2) base destacked from its neighboring residues. This intrastrand 1,3 adduct induces changes in the backbone torsion angles and causes the deoxyribose ring of adenine(1) to switch from a C2'-endo to a predominantly C3'-endo conformation. The other deoxyribose rings retain B DNA type conformations. The structure of trans-[Pt(NH3)2[d(ApGpGpCpCpT)-N7-A(1),N7-G(3)]] differs from those previously reported for cis-DDP 1,2- and 1,3-intrastrand oligonucleotide adducts but is consistent with the structures of trans-DDP 1,3-intrastrand adducts of two previously reported trinucleotides.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号