首页 | 本学科首页   官方微博 | 高级检索  
     


Properties of calcium and potassium currents of clonal adrenocortical cells
Authors:L Tabares  J Ure?a  J López-Barneo
Affiliation:Departamento de Fisiología, Facultad de Medicina, Sevilla, Spain.
Abstract:The ionic currents of clonal Y-1 adrenocortical cells were studied using the whole-cell variant of the patch-clamp technique. These cells had two major current components: a large outward current carried by K ions, and a small inward Ca current. The Ca current depended on the activity of two populations of Ca channels, slow (SD) and fast (FD) deactivating, that could be separated by their different closing time constants (at -80 mV, SD, 3.8 ms, and FD, 0.13 ms). These two kinds of channels also differed in (a) activation threshold (SD, approximately -50 mV; FD, approximately -20 mV), (b) half-maximal activation (SD, between -15 and -10 mV; FD between +10 and +15 mV), and (c) inactivation time course (SD, fast; FD, slow). The total amplitude of the Ca current and the proportion of SD and FD channels varied from cell to cell. The amplitude of the K current was strongly dependent on the internal [Ca2+] and was almost abolished when internal [Ca2+] was less than 0.001 microM. The K current appeared to be independent, or only slightly dependent, of Ca influx. With an internal [Ca2+] of 0.1 microM, the activation threshold was -20 mV, and at +40 mV the half-time of activation was 9 ms. With 73 mM external K the closing time constant at -70 mV was approximately 3 ms. The outward current was also modulated by internal pH and Mg. At a constant pCa gamma a decrease of pH reduced the current amplitude, whereas the activation kinetics were not much altered. Removal of internal Mg produced a drastic decrease in the amplitude of the Ca-activated K current. It was also found that with internal [Ca2+] over 0.1 microM the K current underwent a time-dependent transformation characterized by a large increase in amplitude and in activation kinetics.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号