首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Crystal structure of brain-type creatine kinase at 1.41 A resolution
Authors:Eder M  Schlattner U  Becker A  Wallimann T  Kabsch W  Fritz-Wolf K
Institution:Institute of Cell Biology, Swiss Federal Institute of Technology, ETH Zurich, Switzerland.
Abstract:Excitable cells and tissues like muscle or brain show a highly fluctuating consumption of ATP, which is efficiently regenerated from a large pool of phosphocreatine by the enzyme creatine kinase (CK). The enzyme exists in tissue--as well as compartment-specific isoforms. Numerous pathologies are related to the CK system: CK is found to be overexpressed in a wide range of solid tumors, whereas functional impairment of CK leads to a deterioration in energy metabolism, which is phenotypic for many neurodegenerative and age-related diseases. The crystal structure of chicken cytosolic brain-type creatine kinase (BB-CK) has been solved to 1.41 A resolution by molecular replacement. It represents the most accurately determined structure in the family of guanidino kinases. Except for the N-terminal region (2-12), the structures of both monomers in the biological dimer are very similar and closely resemble those of the other known structures in the family. Specific Ca2+-mediated interactions, found between two dimers in the asymmetric unit, result in structurally independent heterodimers differing in their N-terminal conformation and secondary structure. The high-resolution structure of BB-CK presented in this work will assist in designing new experiments to reveal the molecular basis of the multiple isoform-specific properties of CK, especially regarding different subcellular locations and functional interactions with other proteins. The rather similar fold shared by all known guanidino kinase structures suggests a model for the transition state complex of BB-CK analogous to the one of arginine kinase (AK). Accordingly, we have modeled a putative conformation of CK in the transition state that requires a rigid body movement of the entire N-terminal domain by rms 4 A from the structure without substrates.
Keywords:brain-type creatine kinase  cancer  cellular energy metabolism  guanidino kinase  neurodegenerative disorders
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号