首页 | 本学科首页   官方微博 | 高级检索  
     


Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine
Authors:Kagan Valerian E  Borisenko Grigory G  Tyurina Yulia Y  Tyurin Vladimir A  Jiang Jianfei  Potapovich Alla I  Kini Vidisha  Amoscato Andrew A  Fujii Yasu
Affiliation:

*Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Pittsburgh, PA 15260, USA

Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA 15260, USA

Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA

§Research Institute of Physico-Chemical Medicine, 119992 Moscow, Russia

Sechenov's Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint Petersburg, Russia

||Mass Spectrometry Facility, University of Pittsburgh Center for Biotechnology and Bioengineering, Pittsburgh, PA 15219, USA

**Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA

Abstract:The primary life-supporting function of cytochrome c (cyt c) is control of cellular energetic metabolism as a mobile shuttle in the electron transport chain of mitochondria. Recently, cyt c's equally important life-terminating function as a trigger and regulator of apoptosis was identified. This dreadful role is realized through the relocalization of mitochondrial cyt c to the cytoplasm where it interacts with Apaf-1 in forming apoptosomes and mediating caspase-9 activation. Although the presence of heme moiety of cyt c is essential for the latter function, cyt c's redox catalytic features are not required. Lately, two other essential functions of cyt c in apoptosis, that may rely heavily on its redox activity have been suggested. Both functions are directed toward oxidation of two negatively charged phospholipids, cardiolipin (CL) in the mitochondria and phosphatidylserine (PS) in the plasma membrane. In both cases, oxidized phospholipids seem to be essential for the transduction of two distinctive apoptotic signals: one is participation of oxidized CL in the formation of the mitochondrial permeability transition pore that facilitates release of cyt c into the cytosol and the other is the contribution of oxidized PS to the externalization and recognition of PS (and possibly oxidized PS) on the cell surface by specialized receptors of phagocytes. In this review, we present a new concept that cyt c actuates both of these oxidative roles through a uniform mechanism: its specific interactions with each of these phospholipids result in the conversion and activation of cyt c, transforming it from an innocuous electron transporter into a calamitous peroxidase capable of oxidizing the activating phospholipids. We also show that this new concept is compatible with a leading role for reactive oxygen species in the execution of the apoptotic program, with cyt c as the main executioner.
Keywords:Cardiolipin   Phosphatidylserine   Cytochrome c   Peroxidation   Peroxidase activity of cytochrome c   Apoptosis   Free radicals
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号