首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A single-fractal analysis of cellular analyte-receptor binding kinetics utilizing biosensors
Authors:Ramakrishnan A  Sadana A
Institution:Chemical Engineering Department, University of Mississippi, 134 Anderson Hall, Mississippi 38677-9740, USA.
Abstract:A fractal analysis of a confirmative nature only is presented for cellular analyte-receptor binding kinetics utilizing biosensors. Data taken from the literature can be modeled by using a single-fractal analysis. Relationships are presented for the binding rate coefficient as a function of the fractal dimension and for the analyte concentration in solution. In general, the binding rate coefficient is rather sensitive to the degree of heterogeneity that exists on the biosensor surface. It is of interest to note that examples are presented where the binding coefficient, k exhibits an increase as the fractal dimension (D(f)) or the degree of heterogeneity increases on the surface. The predictive relationships presented provide further physical insights into the binding reactions occurring on the surface. These should assist in understanding the cellular binding reaction occurring on surfaces, even though the analysis presented is for the cases where the cellular "receptor" is actually immobilized on a biosensor or other surface. The analysis suggests possible modulations of cell surfaces in desired directions to help manipulate the binding rate coefficient (or affinity). In general, the technique presented is applicable for the most part to other reactions occurring on different types of biosensor or other surfaces.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号