首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Picosecond time-resolved fluorescence of ribonuclease T1. A pH and substrate analogue binding study.
Authors:L X Chen  J W Longworth  and G R Fleming
Abstract:The tryptophyl fluorescence of ribonuclease T1 decays monoexponentially at pH 5.5, tau = 4.04 ns but on increasing pH, a second short-lived component of 1.5 ns appears with a midpoint between pH 6.5 and 7.0. Both components have the same fluorescence spectrum. Acrylamide quenches both fluorescence components, and the short-lived component is quenched fivefold faster than the predominant long component. Binding of the substrate analogue 2'-guanylic acid at pH 5.5 quenches the fluorescence by 20% and introduces a second decay component, tau = 1.16 ns. Acrylamide quenches both tryptophyl decay components, with similar quenching rates. The fluorescence anisotropy decay of ribonuclease T1 was consistent with a molecule the size of ribonuclease T1 surrounded by a single layer of water at pH 7.4, even though the anisotropy decay at pH 5.5 deviated from Stokes-Einstein behavior. The fluorescence data were interpreted with a model where the tryptophyl residue exists in two conformations, remaining in a hydrophobic pocket. The acrylamide quenching is interpreted with electron transfer theory and suggests that one conformer has the nearest atom approximately 3 A from the protein surface, and the other, approximately 2 A.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号