首页 | 本学科首页   官方微博 | 高级检索  
     


Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation
Authors:Chen Gen-Yun  Yong Zhen-Hua  Liao Yi  Zhang Dao-Yun  Chen Yue  Zhang Hai-Bo  Chen Juan  Zhu Jian-Guo  Xu Da-Quan
Affiliation:Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, PR China.
Abstract:Net photosynthetic rates (Pns) in leaves were compared between rice plants grown in ambient air control and free-air CO2 enrichment (FACE, about 200 micromol mol(-1) above ambient) treatment rings. When measured at the same CO2 concentration, the Pn of FACE leaves decreased significantly, indicating that photosynthetic acclimation to high CO2 occurs. Although stomatal conductance (Gs) in FACE leaves was markedly decreased, intercellular CO2 concentrations (Ci) were almost the same in FACE and ambient leaves, indicating that the photosynthetic acclimation is not caused by the decreased Gs. Furthermore, carboxylation efficiency and maximal Pn, both light and CO2-saturated Pn, were decreased in FACE leaves, as shown by the Pn-Ci curves. In addition, the soluble protein, Rubisco (ribulose-1,5-bisphosphate caboxylase/oxygenase), and its activase contents as well as the sucrose-phosphate synthase activity decreased significantly, while some soluble sugar, inorganic phosphate, chlorophyll and light-harvesting complex II (LHC II) contents increased in FACE leaves. It appears that the photosynthetic acclimation in rice leaves is related to both ribulose-1,5-bisphosphate (RuBP) carboxylation limitation and RuBP regeneration limitation.
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号