首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Purification, Characterization, and Mechanism of a Flavin Mononucleotide-Dependent 2-Nitropropane Dioxygenase from Neurospora crassa
Authors:Natalia Gorlatova  Marek Tchorzewski  Tatsuo Kurihara  Kenji Soda  and Nobuyoshi Esaki
Abstract:A nitroalkane-oxidizing enzyme was purified to homogeneity from Neurospora crassa. The enzyme is composed of two subunits; the molecular weight of each subunit is approximately 40,000. The enzyme catalyzes the oxidation of nitroalkanes to produce the corresponding carbonyl compounds. It acts on 2-nitropropane better than on nitroethane and 1-nitropropane, and anionic forms of nitroalkanes are much better substrates than are neutral forms. The enzyme does not act on aromatic compounds. When the enzyme reaction was conducted in an 18O2 atmosphere with the anionic form of 2-nitropropane as the substrate, acetone (with a molecular mass of 60 Da) was produced. This indicates that the oxygen atom of acetone was derived from molecular oxygen, not from water; hence, the enzyme is an oxygenase. The reaction stoichiometry was 2CH3CH(NO2)-CH3 + O2→2CH3COCH3 + 2HNO2, which is identical to that of the reaction of 2-nitropropane dioxygenase from Hansenula mrakii. The reaction of the Neurospora enzyme was inhibited by superoxide anion scavengers in the same manner as that of the Hansenula enzyme. Both of these enzymes are flavoenzymes; however, the Neurospora enzyme contains flavin mononucleotide as a prosthetic group, whereas the Hansenula enzyme contains flavin adenine dinucleotide.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号