P2-purinergic receptors are coupled to two signal transduction systems leading to inhibition of cAMP generation and to production of inositol trisphosphate in rat hepatocytes |
| |
Authors: | F Okajima Y Tokumitsu Y Kondo M Ui |
| |
Affiliation: | Department of Physical Biochemistry, Gunma University, Maebashi, Japan. |
| |
Abstract: | Stimulation of P2-purinergic receptors by ATP resulted in activation of phosphorylase, which was associated with marked production of inositol trisphosphate (Ins-P3), in rat hepatocytes. ATP also inhibited forskolin-induced accumulation of cAMP in the presence of a phosphodiesterase inhibitor. On the contrary, adenosine or AMP never inhibited the cAMP accumulation, but increased hepatocyte cAMP; the stimulation was antagonized by a methylxanthine. Thus, P1-purinergic receptors are linked to adenylate cyclase in a stimulatory fashion in hepatocytes. Various kinds of purine nucleotides stimulating P2-receptors can be divided into two groups on the basis of their relative abilities to stimulate Ins-P3 production and to inhibit cAMP accumulation; the first group including adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S), ADP, 5-adenylyl imidodiphosphate, GTP, and guanosine 5'-O-(3-thiotriphosphate) has an efficacy similar to that of ATP, and the second group of nucleotides including alpha, beta-methyleneadenosine 5'-triphosphate, beta, gamma-methyleneadenosine 5'-triphosphate (App(CH)2)p), and GDP exerts considerable inhibitory effects on cAMP accumulation, but only slight effects on inositol lipid metabolism. Treatment of hepatocytes with islet-activating protein, pertussis toxin, blocked the nucleotide-induced inhibition of cAMP accumulation, but exerted only a small effect on Ins-P3 production. In membranes prepared from hepatocytes, forskolin-stimulated adenylate cyclase was inhibited by GTP. This GTP-induced inhibition of the enzyme was susceptible to islet-activating protein and dependent on the concentration of ATP (or its derivatives, ATP gamma S or App(CH2)p). It is concluded that there are two types of P2-purinergic receptors: one is linked to adenylate cyclase via an inhibitory guanine nucleotide regulatory protein (Gi) and the other is linked to phospholipase C. |
| |
Keywords: | |
|
|