首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Peptide backbone conformation affects the substrate preference of protein arginine methyltransferase I
Authors:Kölbel Knut  Ihling Christian  Kühn Uwe  Neundorf Ines  Otto Silke  Stichel Jan  Robaa Dina  Beck-Sickinger Annette G  Sinz Andrea  Wahle Elmar
Institution:Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg , Kurt-Mothes-Strasse 3, 06120 Halle, Germany.
Abstract:Asymmetric dimethylation of arginine side chains is a common post-translational modification of eukaryotic proteins, which serves mostly to regulate protein-protein interactions. The modification is catalyzed by type I protein arginine methyltransferases, PRMT1 being the predominant member of the family. Determinants of substrate specificity of these enzymes are poorly understood. The Nuclear poly(A) binding protein 1 (PABPN1) is methylated by PRMT1 at 13 arginine residues located in RXR sequences in the protein's C-terminal domain. We have identified a preferred site for PRMT1-catalyzed methylation in PABPN1 and in a corresponding synthetic peptide. Variants of these substrates were analyzed by steady-state kinetic analysis and mass spectrometry. The data indicate that initial methylation is directed toward the preferred arginine residue by an N-terminally adjacent proline. Enhanced methylation upon peptide cyclization suggests that induction of a reverse turn structure is the basis for the ability of the respective proline residue to enable preferred methylation of the neighboring arginine residue, and this notion is supported by far-UV circular dichroism spectroscopy. We suggest that the formation of a reverse turn facilitates the access of arginine side chains to the active sites of PRMT1, which are located in the central cavity of a doughnut-shaped PRMT1 homodimer.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号