首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structure and ion channel activity of the human respiratory syncytial virus (hRSV) small hydrophobic protein transmembrane domain
Authors:Gan Siok Wan  Ng Lifang  Lin Xin  Gong Xiandi  Torres Jaume
Institution:School of Biological Sciences, Nanyang Technological University, 637551 Singapore.
Abstract:The small hydrophobic (SH) protein from the human respiratory syncytial virus (hRSV) is a glycoprotein of approximately 64 amino acids with one putative alpha-helical transmembrane domain. Although SH protein is important for viral infectivity, its exact role during viral infection is not clear. Herein, we have studied the secondary structure, orientation, and oligomerization of the transmembrane domain of SH (SH-TM) in the presence of lipid bilayers. Only one oligomer, a pentamer, was observed in PFO-PAGE. Using polarized attenuated total reflection-Fourier transform infrared (PATR-FTIR) spectroscopy, we show that the SH-TM is alpha-helical. The rotational orientation of SH-TM was determined by site-specific infrared dichroism (SSID) at two consecutive isotopically labeled residues. This orientation is consistent with that of an evolutionary conserved pentameric model obtained from a global search protocol using 13 homologous sequences of RSV. Conductance studies of SH-TM indicate ion channel activity, which is cation selective, and inactive below the predicted pK(a) of histidine. Thus, our results provide experimental evidence that the transmembrane domain of SH protein forms pentameric alpha-helical bundles that form cation-selective ion channels in planar lipid bilayers. We provide a model for this pore, which should be useful in mutagenesis studies to elucidate its role during the virus cycle.
Keywords:small hydrophobic protein  ion channel  infrared dichroism  molecular dynamics
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号