首页 | 本学科首页   官方微博 | 高级检索  
     


Adaptive and Slightly Deleterious Evolution in a Conifer, Cryptomeria japonica
Authors:Akihiro Fujimoto  Tomoyuki Kado  Hiroshi Yoshimaru  Yoshihiko Tsumura  Hidenori Tachida
Affiliation:Department of Biology, Faculty of Sciences, Kyushu University, Ropponmatsu, Fukuoka, 810-8560, Japan.
Abstract:In order to evaluate effects of the population structure and natural selection on organisms having long generation times, we surveyed DNA polymorphisms at five loci encoding 9-cis-epoxycarotenoid dioxygenase (NCED), ammonium transporter, calmodulin, aquaporin, and the second major allergen with polymethylgalacturonase enzyme activity in the pollen (Cryj2) in a conifer, Cryptomeria japonica. The average nucleotide diversity at silent sites across 12 loci including the previously analyzed seven loci was 0.0044. The population recombination rate (4Nr, where N and r are the effective population size and recombination rate per base per generation, respectively) was estimated as 0.00046 and a slow reduction in the population size was indicated, according to the maximum likelihood method implemented in LAMARC. At NCED, the McDonald-Kreitman (MK) test revealed an excess of replacement polymorphisms, suggesting contributions of slightly deleterious mutations. In contrast, the MK test revealed an excess of replacement divergence at Cryj2 and a maximum likelihood approach using the PAML package revealed that certain amino acid sites had a nonsynonymous/synonymous substitution rate ratio (omega) > 4.0, indicating adaptive evolution at this locus. The overall analysis of the 12 loci suggested that adaptive, neutral, and slightly deleterious evolution played important roles in the evolution of C. japonica.
Keywords:Conifer  DNA polymorphism  Slightly deleterious mutation  Adaptive evolution  Recombination rate  Population size
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号