首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Simulation of gas transport due to cardiogenic oscillations
Authors:Slutsky  A S; Khoo  M C; Brown  R
Abstract:We simulated gas transport due to cardiogenic oscillations (CO) using a model developed to quantify the gas mixing due to high-frequency ventilation (16). The basic components of the model are 1) gas mixing by augmented transport, 2) symmetrical lung morphometry, and 3) a Lagrangian (moving) reference frame. The theoretical predictions of the model are in general agreement with published experimental studies that have examined the effect of CO on the nitrogen concentration obtained by intrapulmonary gas sampling and the effect of CO on regional and total anatomical dead space. Further, the model predicts that augmentation of gas transport due to CO is less, nearer to the alveolar regions of the lung, and that the effect of CO during normal tidal breathing is negligible, but that CO may contribute up to approximately 10% of the alveolar ventilation in patients with severe hypoventilation. The agreement between experimental and theoretical results suggests that it may not be necessary to invoke gas transport mechanisms specific to an asymmetrical bronchial tree to explain the major proportion of gas transport due to CO.
Keywords:
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》浏览原始摘要信息
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号