Abstract: | Single-cell sequencing promotes our understanding of the heterogeneity of cellular populations, including the haplotypes and genomic variability among different generation of cells. Whole-genome amplification is crucial to generate sufficient DNA fragments for single-cell sequencing projects. Using sequencing data from single sperms, we quantitatively compare two prevailing amplification methods that extensively applied in single-cell sequencing, multiple displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC). Our results show that MALBAC, as a combination of modified MDA and tweaked PCR, has a higher level of uniformity, specificity and reproducibility. |