首页 | 本学科首页   官方微博 | 高级检索  
     


Limitation to Photosynthesis in Water-stressed Leaves: Stomata vs. Metabolism and the Role of ATP
Authors:LAWLOR   DAVID W.
Affiliation:1IACR-Rothamsted, Harpenden, Herts., AL5 2AQ, UK
Abstract:Decreasing relative water content (RWC) of leaves progressivelydecreases stomatal conductance (gs), slowing CO2 assimilation(A) which eventually stops, after which CO2 is evolved. In somestudies, photosynthetic potential (Apot), measured under saturatingCO2, is unaffected by a small loss of RWC but becomes progressivelymore inhibited, and less stimulated by elevated CO2, below athreshold RWC (Type 1 response). In other studies, Apot andthe stimulation of A by elevated CO2 decreases progressivelyas RWC falls (Type 2 response). Decreased Apot is caused byimpaired metabolism. Consequently, as RWC declines, the relativelimitation of A by gs decreases, and metabolic limitation increases.Causes of decreased Apot are considered. Limitation of ribulosebisphosphate (RuBP) synthesis is the likely cause of decreasedApot at low RWC, not inhibition or loss of photosynthetic carbonreduction cycle enzymes, including RuBP carboxylase/oxygenase(Rubisco). Limitation of RuBP synthesis is probably caused byinhibition of ATP synthesis, due to progressive inactivationor loss of Coupling Factor resulting from increasing ionic (Mg2+)concentration, not to reduced capacity for electron or protontransport, or inadequate trans-thylakoid proton gradient ({Delta}pH).Inhibition of Apot by accumulation of assimilates or inadequateinorganic phosphate is not considered significant. DecreasedATP content and imbalance with reductant status affect cellmetabolism substantially: possible consequences are discussedwith reference to accumulation of amino acids and alterationsin protein complement under water stress.
Keywords:Photosynthesis   relative water content (RWC)   ATP synthesis   stomata   amino acid metabolism   ribulose bisphosphate synthesis   protein synthesis   chaperones.
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号