首页 | 本学科首页   官方微博 | 高级检索  
     


Reverse-Polynomial Dilution Calibration Methodology Extends Lower Limit of Quantification and Reduces Relative Residual Error in Targeted Peptide Measurements in Blood Plasma
Authors:Yunki Y. Yau  Xizi Duo  Rupert W.L. Leong  Valerie C. Wasinger
Affiliation:From the ‡Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052 Australia; ;§School of Medical Science, The University of New South Wales, Sydney, NSW 2052 Australia; ;¶Department of Gastroenterology, Concord Repatriation General Hospital, Concord, NSW 2139 Australia
Abstract:Matrix effect is the alteration of an analyte''s concentration-signal response caused by co-existing ion components. With electrospray ionization (ESI), matrix effects are believed to be a function of the relative concentrations, ionization efficiency, and solvation energies of the analytes within the electrospray ionization droplet. For biological matrices such as plasma, the interactions between droplet components is immensely complex and the effect on analyte signal response not well elucidated. This study comprised of three sequential quantitative analyses: we investigated whether there is a generalizable correlation between the range of unique ions in a sample matrix (complexity); the amount of matrix components (concentration); and matrix effect, by comparing an E. coli digest matrix (∼2600 protein proteome) with phospholipid depleted human blood plasma, and unfractionated, nondepleted human plasma matrices (∼107 proteome) for six human plasma peptide multiple reaction monitoring assays. Our data set demonstrated analyte-specific interactions with matrix complexity and concentration properties resulting in significant ion suppression for all peptides (p < 0.01), with nonuniform effects on the ion signals of the analytes and their stable-isotope analogs. These matrix effects were then assessed for translation into relative residual error and precision effects in a low concentration (∼0–250 ng/ml) range across no-matrix, complex matrix, and highly complex matrix, when a standard addition stable isotope dilution calibration method was used. Relative residual error (%) and precision (CV%) by stable isotope dilution were within <20%; however, error in phospholipid-depleted and nondepleted plasma matrices were significantly higher compared with no-matrix (p = 0.006). Finally a novel reverse-polynomial dilution calibration method with and without phospholipid-depletion was compared with stable isotope dilution for relative residual error and precision. Reverse-polynomial dilution techniques extend the Lower Limit of Quantification and reduce error (p = 0.005) in low-concentration plasma peptide assays and is broadly applicable for verification phase Tier 2 multiplexed multiple reaction monitoring assay development within the FDA-National Cancer Institute (NCI) biomarker development pipeline.Plasma is the overriding human medium sampled for established and novel protein biomarkers (1, 2). As of 2011, 1929 high-confidence proteins have been cataloged by the Human Plasma Proteome Project, with estimates that there are up to 107 unique protein sequences in plasma that span a concentration range across 10 orders of magnitude (1, 3). 99% of the protein mass in plasma is made up of 22 proteins including Albumin, Fibrinogen, and a range of immunoglobulins, leaving more than 1900 known small proteins and essentially the entirety of the projected plasma proteome in the remaining 1% (4). It is these low-mass, low abundance proteins such as the Interleukins, C-Reactive Protein, and Carcinoma Antigen 125 (CA125), that are indicative of many important physiological and pathological processes, and proteomic scientists and clinicians have thus focused their efforts in qualitatively and quantitatively defining this fraction for novel biomarkers (46).The development of plasma biomarkers is a large-scale undertaking that spans discovery, verification, and validation phases in a multistage pipeline: Thousands of “discovered” differentiated proteins are evaluated for probability of effect, from which 10–100s of proteins are then selected for targeted quantification in verification phase to evaluate sensitivity and specificity for its intended indication (2, 7). Finally a panel of the strongest marker candidates is progressed to validation phase, and FDA-level validated quantitative assays are used to test the clinical utility of the biomarker panel. Liquid Chromatography coupled with Tandem Mass Spectrometry (LC-MS/MS)1 is the most robust analytical method available for proteomic scientists in this pipeline, able to separate complex mixtures and specifically and sensitively identify and quantify its components (2, 710), The ability to ionize and evaporate the contents of a liquid sample (coupling LC to MS/MS) is the basis that allows this to happen (9). Electrospray Ionization (ESI) is the most widely used ionization apparatus in LC-MS/MS bioanalysis because of its ionization efficiency and stability and low chemical specificity (9, 10). Although these properties make ESI very robust, the complexity of biological matrices poses a significant challenge for LC-ESI-MS/MS-based quantitation; despite chromatography and nanospray technology, the ESI droplet of a plasma peptide-digest sample (given its immense range of unique protein/peptide sequences and concentrations) can contain an unknown multitude of co-eluting components that “compete” to dissolve from the droplet and reach gas phase, suppressing and varying the signal intensity responses for a given analyte concentration (913). These ionization competing elements can also go on to produce isobaric signals in the third quadrupole that interfere with an analyte''s transition signals (14). Termed “matrix effects,” these phenomena of complex sample matrices can significantly impede quantitative accuracy (15). For high-throughput clinical assays, matrix effects are controlled for by preparing calibration standards in the same biological matrix to mimic the conditions of the samples intended for study as per FDA bioanalytical method validation guidelines (16). The catch to this technique is that the signal from the endogenous analyte in the background matrix hinders accuracy when the nominal concentration is close to or below the endogenous signal (14, 17). There is a need for broadly applicable methods of controlling matrix effects and increasing accuracy in low concentration MRM peptide assays for nondepleted, unfractionated plasma that can be adopted for the highly multiplexed, high throughput, “Tier 2” MS assays required in verification phase of the biomarker development pipeline (2, 8). Several simple methods have independently demonstrated the ability to increase accuracy in various hyphenated-MS assays in complex matrices: “Reverse” curves utilize the stable-isotope analog not as an internal standard but as a surrogate calibration analyte to circumvent interference from the endogenous analyte signal and extend assay Lower Limit(s) of Quantification (LLOQ), and nonlinear calibration techniques have proven to more accurately reflect the concentration-MS detector response at the low and high end of concentration gradients (8, 14, 1821). Specifically in the case of biological matrices, phospholipids are particularly deleterious ion suppressing elements because of their easily ionizable, polar, and hydrophobic moieties that can have complex interactions with co-eluting analytes as well as the chromatography stationary and mobile phases required for most other analytes (2225). Combination solid-phase extraction (SPE) and phospholipid removal techniques have proved to effectively minimize ion suppression effects in ESI-MS assays (2225).In this study, we investigated whether there is a generalizable linear correlation between the number of unique ions (complexity) in a biological sample matrix, the amount of ionizable matrix content (concentration), and matrix effects, for six human plasma peptides comparing serial dilutions of an Escherichia Coli (E. coli) peptide-digest against phospholipid-depleted and nondepleted unfractionated human plasma peptide-digest (highly complex) matrices. We examined the influence of matrix effects on relative residual error in a low-concentration (∼0–250 ng/ml) plasma peptide range, and compared the utility of a reverse-polynomial dilution (RPD) calibration method versus standard addition stable-isotope dilution (SID) in phospholipid-depleted and nondepleted unfractionated human plasma. A peptide-centric matrix effect is reported and the effect of the endogenous analyte signal on relative residual error in low-concentration (∼0–250 ng/ml) plasma peptide assays is established. A RPD calibration technique that extends LLOQ and reduces relative residual error in low-concentration plasma peptide MRM assays is presented.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号