首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Systematically Ranking the Tightness of Membrane Association for Peripheral Membrane Proteins (PMPs)
Authors:Liyan Gao  Haitao Ge  Xiahe Huang  Kehui Liu  Yuanya Zhang  Wu Xu  Yingchun Wang
Institution:From the ‡State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China; ;§State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China; ;¶Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana 70504
Abstract:Large-scale quantitative evaluation of the tightness of membrane association for nontransmembrane proteins is important for identifying true peripheral membrane proteins with functional significance. Herein, we simultaneously ranked more than 1000 proteins of the photosynthetic model organism Synechocystis sp. PCC 6803 for their relative tightness of membrane association using a proteomic approach. Using multiple precisely ranked and experimentally verified peripheral subunits of photosynthetic protein complexes as the landmarks, we found that proteins involved in two-component signal transduction systems and transporters are overall tightly associated with the membranes, whereas the associations of ribosomal proteins are much weaker. Moreover, we found that hypothetical proteins containing the same domains generally have similar tightness. This work provided a global view of the structural organization of the membrane proteome with respect to divergent functions, and built the foundation for future investigation of the dynamic membrane proteome reorganization in response to different environmental or internal stimuli.The cells of living organisms contain different types of membranes performing uniquely specific functions that are largely dictated by their protein compositions. Membrane proteome typically contains integral membrane proteins (IMPs)1 with one or more transmembrane domains (TM) and peripheral membrane proteins (PMPs) without TM. PMPs usually interact with IMPs and function together as protein complexes, as typically demonstrated by the peripheral subunits of the membrane protein complexes such as photosystem (PS) I, PSII, the F1F0-ATP synthase, and ABC type transporters (16). Identification of the PMPs is important for the understanding of the underlying mechanism of various membrane related functions, and could help to discover novel functionally important membrane protein complexes.Large-scale identification of PMPs were typically performed by identification of the total proteins from the isolated whole membranes from which PMPs were predicted by the absence of TM using topology prediction software such as TMHMM (7), or by identification of the proteins extracted from the intact whole membranes with chaotropic reagents such as high concentration salts, urea, or high pH solution (813). These methods can identify some non-TM containing proteins uniquely from the membrane fraction. However, in most cases the majority of the non-TM containing proteins identified with such methods can also be identified from the soluble fraction that is expected to consist of mainly cytoplasmic proteins. Therefore, it is necessary to evaluate whether the non-TM containing proteins identified from the membranes are true PMPs or just some carry-over contaminant from the soluble fraction during sample fractionation. Unfortunately, the high throughput method to perform such an evaluation is still lacking, and such a method is a pressing need considering the ever-increasing number of identified proteins from a single proteomic study.The unicellular photosynthetic cyanobacterium Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis) is an ideal organism for studies in membrane proteomics. Synechocystis is the first cyanobacterium with a completely sequenced genome and contains large numbers of membrane structures (1214). The organism can naturally take up foreign DNA from environment and integrate it into its genome through homologous recombination, making it simple to perform target mutagenesis for the validation of functional significance of proteins screened from high throughput approaches. The autotrophic growth ability allows Synechocystis to emerge as a potential cost-effective cell factory for producing clean and renewable biofuels to deal with the world-wide crisis of energy shortage and environmental pollution (1518). Functional proteomics have great potential in the identification of novel target proteins and for discovering and optimizing novel protein networks for the generation of biofuel-producing strains with higher efficiency and less cost.We separated Synechocystis whole cell lysates into membrane and soluble fractions, and identified the proteins in each fraction with unprecedented coverage using high-resolution MS. We present a novel method and its rationale for evaluating the tightness of membrane association for all non-TM containing proteins identified in both fractions. This built a foundation for the large-scale identification of bona fide peripheral membrane proteins, particularly for the hypothetical and unknown proteins that are not known to be physically or functionally associated with the membranes.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号