Abstract: | Adventitious agent testing in biomanufacturing requires assays of broad detection capability to screen for as many infectious agents as possible. The current gold standard for general infectious adventitious virus screening is the in vitro assay in which test articles are cultured onto a panel of different cell lines and observed for cytopathic effect (CPE). However, this assay is inherently subjective due to the nature of visual observation of cell morphology and labor and time intensive, requiring highly trained personnel to identify CPE. Laser force cytology (LFC) is an alternative, automated analytical method that uses a combination of optical and fluidic forces along with imaging to objectively and quantitatively assess CPE in cell culture. Importantly, because LFC uses no labels or antibodies, the assay is appropriate for general adventitious agent testing. Using LFC, changes in cellular features associated with virally infected cells were identified using principal component analysis. Using these features of infected cells, the sensitivity and earliness of detection with LFC was directly compared with the in vitro assay for a diverse panel of viruses incubated with chinese hamster ovary (CHO), Vero, and Medical Research Council cell strain 5 (MRC-5) cells. LFC detected viral infection with a sensitivity equal to the in vitro assay on average, but in certain virus and cell combinations including mouse minute virus (MMV) and reovirus 3 in CHO cells, detection was 4 days earlier and for MMV, the limit of detection was 10-fold lower. Overall, these results demonstrate the ability of LFC to serve as a biopharmaceutical adventitious agent testing methodology with sensitivity equivalent to the in vitro assay, but in an objective and automated manner. |