首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phosphorescence and optically detected magnetic resonance of 4',6-diamidino-2-phenylindole (DAPI) and its complexes with [d(CGACGTCG)]2 and [d(GGCCAATTGG)]2
Authors:Misra Ajay  Ozarowski Andrzej  Maki August H
Institution:Department of Chemistry, University of California, Davis, California 95616, USA.
Abstract:Phosphorescence and optical detection of magnetic resonance (ODMR) is used to study the excited triplet state of 4',6-diamidino-2-phenyl indole (DAPI) and its complexes with the oligonucleotides d(CGACGTCG)](2) and d(GGCCAATTGG)](2), where binding occurs by intercalation between GC base pairs and by minor groove insertion, respectively. Weaker binding of DAPI to phosphate is also detected, and the triplet state of this complex is characterized. Intercalation with d(CGACGTCG)](2) produces a phosphorescence redshift, while groove binding with d(GGCCAATTGG)](2) leads to a blueshift. Both binding modes give rise to a small decrease in the zero-field splitting (zfs) of the DAPI triplet state. The largest redshift and zfs decrease are found for the phosphate complex. The phosphorescence lifetimes are shorter by an order of magnitude than that of indole or tryptophan as expected for the lower triplet state energy, E(00), of DAPI. The lifetimes agree well with a correlation with E(00) introduced by Siebrand Siebrand, W. (1966) J. Chem. Phys. 44, 4055-4057] except for the d(GGCCAATTGG)](2) minor groove complex with a lifetime that is about 20% too long. The longer lifetime is attributed to distortion of the amidino groups in this complex, resulting in less efficient intersystem crossing.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号