首页 | 本学科首页   官方微博 | 高级检索  
   检索      


144 Sculpting light with DNA origami
Authors:Anton Kuzyk  Robert Schreiber  Zhiyuan Fan  Günther Pardatscher  Eva-Maria Roller  Alexander Högele
Institution:Department of Physics and Center for Nanoscience Ludwig-Maximilians-Universit?t München , München , Germany Phone: Phone: +49 89 2180 3725 Fax: Phone: +49 89 2180 3725
Abstract:We used the DNA origami method (Rothemund, 2006) for the fabrication of self-assembled nanoscopic materials (Seeman, 2010). In DNA origami, a virus-based 8?kilobase-long DNA single-strand is folded into shape with the help of ~ 200 synthetic oligonucleotides. The resulting DNA nanostructures can be designed to adopt any three-dimensional shape and can be addressed through DNA hybridization or chemical modification with nanometer precision. We have realized that complex assemblies of nanoparticles, including magnetic, fluorescent, and plasmonic nanoparticles. Such nanoconstructs may exhibit striking optical properties such as strong optical activity in the visible range (Kuzyk et al., 2012). To this end, plasmonic particles were assembled in solution to form helices of controlled handedness. We achieved spatial control over particle placement better than 2?nm and attachment yields of 97% and above. As a collective optical response emerging from our dispersed nanostructures, we detected pronounced circular dichroism (CD) originating from the plasmon–plasmon interactions in the particle helices. In recent experiments, we were able to show that the optical response of chiral biomolecules can be transferred from the UV into the visible region in plasmonic hotspots. Thus, sensitive detection of chiral biomolecules may become feasible in the near future. We also found that the orientation of the helices in respect to the incoming light beam critically influences the resulting CD spectra. Our results can be explained with theoretical models based on plasmonic dipole interaction and demonstrate the potential of DNA origami for the assembly of metafluids with designed optical properties. /></span></td>
	  </tr> 
	  <tr>
	   <td align=
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号