首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular Docking of the Scorpion Toxin Tc1 to the Structural Model of the Voltage-gated Potassium Channel Kv1.1 from Human Homo sapiens
Authors:Hsuan-Liang Liu  Jin-Chung Lin
Institution:Department of Chemical Engineering , Graduate Institute of Biotechnology National Taipei University of Technology , No. 1 Sec. 3 Chung-Hsiao E. Rd., Taipei , Taiwan , 10608
Abstract:Abstract

In this study, structural model of the pore loop region of the voltage-gated potassium channel Kv1.1 from human Homo sapiens was constructed based on the crystallographic structure of KcsA by structural homology. The pore loop region of Kv1.1 exhibits similar folds as that of KcsA. The structural feature of the selectivity filter of Kv1.1 is nearly identical to that of KcsA, whereas most of the structural variations occur in the turret as well as in the inner and outer helices. Molecular docking experiments of the scorpion toxin Tc1 from Tityus cambridgei to the outer vestibule of KcsA as well as Kv1.1 were subsequently performed with various initial Tc1 orientations. Tc1 was found to form the most stable complexes with these two K+ channels when the side chain of Lys14 occupies the pore of the selectivity filter through electrostatic interaction. Tc1 binds preferentially towards Kv1.1 than KcsA due to stronger hydrophobic and electrostatic interactions formed between the toxin and the selectivity filter and outer vestibule of Kv1.1. Furthermore, surface complementarity of the outer vestibules of the channels to the Tc1 spatial conformations also plays an important role in stabilizing both the Tc1/KcsA and Tc1/Kv1.1 complexes.
Keywords:Potassium channel  Structural homology  Selectivity filter  Molecular docking  Scorpion toxin  Surface complementarity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号