首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of helix and fingertip mutations on the thermostability of xyn11A investigated by molecular dynamics simulations and enzyme activity assays
Authors:Thana Sutthibutpong  Triwit Rattanarojpong  Pongsak Khunrae
Affiliation:1. Theoretical and Computational Physics Group, Department of Physics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand;2. Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailandthana.sut@mail.kmutt.ac.th;4. Department of Microbiology, Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi, 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
Abstract:Local conformational changes and global unfolding pathways of wildtype xyn11A recombinant and its mutated structures were studied through a series of atomistic molecular dynamics (MD) simulations, along with enzyme activity assays at three incubation temperatures to investigate the effects of mutations at three different sites to the thermostability. The first mutation was to replace an unstable negatively charged residue at a surface beta turn near the active site (D32G) by a hydrophobic residue. The second mutation was to create a disulphide bond (S100C/N147C) establishing a strong connection between an alpha helix and a distal beta hairpin associated with the thermally sensitive Thumb loop, and the third mutation add an extra hydrogen bond (A155S) to the same alpha helix. From the MD simulations performed, MM/PBSA energy calculations of the unfolding energy were in a good agreement with the enzyme activities measured from the experiment, as all mutated structures demonstrated the improved thermostability, especially the S100C/N147C proved to be the most stable mutant both by the simulations and the experiment. Local conformational analysis at the catalytic sites and the xylan access region also suggested that mutated xyn11A structures could accommodate xylan binding. However, the analysis of global unfolding pathways showed that structural disruptions at the beta sheet regions near the N-terminal were still imminent. These findings could provide the insight on the molecular mechanisms underlying the enhanced thermostability due to mutagenesis and changes in the protein unfolding pathways for further protein engineering of the GH11 family xylanase enzymes.
Keywords:molecular dynamics  protein engineering  GH11 xylanase  enzyme activity  enzyme thermostability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号