Dynamic Bis-Intercalation of a Homodimeric Thiazole Orange Dye in DNA: Evidence of Intercalator Creeping |
| |
Authors: | Jef Faridi Katrine E. Nielsen Paul C. Stein Jens Peter Jacobsen |
| |
Affiliation: | Department of Chemistry , Odense University , Odense M , DK-5230 , Denmark |
| |
Abstract: | Abstract We have used one and two dimensional exchange 1H NMR spectroscopy to characterize the dynamics of the binding of a homodimeric thiazole orange dye, 1,1′-(4,4,8,8-tetramethyl-4,8-diaza-undecamethylene)-bis-4-(3-methyl-2,3-dihydro-(benzo-1,3-thiazole)-2-methylidene)-quinolinium tetraiodide (TOTO), to double stranded DNA (dsDNA). The double stranded oligonucleotides used were d-(CGCTAGCG)2 ( 1 ) and d(CGCTAGCTAGCG)2 ( 2 ). TOTO binds preferentially to the (5′-CTAG-3′)2 sites and forms mixtures of 1:1 and 1:2 dsDNA-TOTO complexes with 2 in ratios dependent on the relative amount of TOTO and the oligonucleotide in the sample. The dynamic exchange between preferential binding sites in the case of a 2:1 1 -TOTO mixture is an intermolecular exchange process between two binding sites on different oligonucleotides. In the case of the 1:1 2 -TOTO complex an intramolecular exchange process occur between two different binding sites on the same strand. Both processes were studied. The results demonstrate the ability of TOTO to migrate along a dsDNA strand in an intramolecular exchange process. The migration process (“creeping”) along the DNA strand is 6 times faster than the rate of intermolecular exchange between sites in two different oligonucleotides. |
| |
Keywords: | |
|
|