首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Subunit Secondary Structure in Filamentous Viruses: Predictions and Observations
Authors:Janet Finer-Moore  Robert M Stroud  Betty Prescott  George J Thomas jr
Institution:1. Department of Biochemistry and Biophysics , School of Medicine University of California , San Francisco , CA , 94143;2. Department of Chemistry , Southeastern Massachusetts University , North Dartmouth , MA , 02747
Abstract:Abstract

The algorithm of Gamier, Osguthorpe and Robson (J. Mol. Biol. 120, 97–120, 1978) for prediction of protein secondary structure has been applied to the coat protein sequences of six filamentous bacteriophages: fd, Ifl, IKe, Pfl, Xf and Pf3. For subunits of Class I virions (fd, Ifl, IKe), the algorithm predicts a very high percentage of helix in comparison to other structure types, which is in accord with the results of laser Raman and circular dichroism measurements. For subunits of the Class II virions (Pfl, Xf, Pf3), the algorithm consistently predicts a predominance of β structure, which is compatible with the demonstrated facility for conversion of Class II subunits from α-helix to β-strand under appropriate experimental conditions (Thomas, Prescott and Day, J. Mol. Biol. 165, 321–356, 1983). Even when the algorithm is biased to favor helix, the Class II virion subunits are predicted to contain considerably more strand than helix. Qualitatively similar results are obtained using the algorithm of Chou and Fasman {Adv. Enzym. 47, 45–148,45-148). Therefore, both predictive and experimental methods indicate a distinction between Gass I and II subunits, which is reflected in a greater tendency of the latter to adopt other than uniform β-helical conformation. The results suggest a possible model for the disassembly of filamentous viruses which may involve the unraveling of coat protein helices at the N terminus.
Keywords:Nucleic acid bases  Base pairs  Electronic transitions  Excited states  Nonradiative decay
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号