首页 | 本学科首页   官方微博 | 高级检索  
     


Evidence-based docking of the urease activation complex
Authors:Rodrigo Ligabue-Braun  Rafael Real-Guerra  Célia Regina Carlini
Affiliation:1. Graduate Program in Cellular and Molecular Biology, Center of Biotechnology , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , RS , Brazil;2. Graduate Program in Cellular and Molecular Biology, Center of Biotechnology , Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , RS , Brazil;3. Department of Biophysics-IB , UFRGS , Porto Alegre , RS , Brazil
Abstract:Abstract

1 1Both authors share senior authorship. Ureases require accessory proteins for their activation and proper function. In Klebsiella aerogenes, UreD, UreF, UreG, and UreE are sequentially complexed to UreABC as required for its activation. Until now, only low-resolution structures are available for this activation complex. To circumvent such limitation, our work intends to provide an atomic-level model for the (UreABC–UreDFG)3 complex from K. aerogenes, by employing comparative modeling associated to sequential macromolecular dockings, validated through small-angle X-ray scattering profiles and comparison with results from cross-linking, mutagenesis, and pull-down experiments. Additionally, normal mode analyses of the obtained complex supported the characterization of the elevated flexibility of both UreD–UreF dimer and (UreABC–UreDFG)3 oligomer, explaining the previously observed diffuse binding of UreD to the apoenzyme. The model shown here is the first atomic-level depiction of this complex, a required step for the unraveling of the urease activation process.

An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:6
Keywords:oligomer  macromolecular docking  UreD  UreF  UreG  UreABC
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号