首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spin-Labeled Nucleotide Mobility in the Boundary of the EcoRI Endonuclease Binding Site
Authors:Robert S Keyes  Ying Y Caot  Elisabeth V Bobst  John M Rosenberg  Albert M Bobst
Institution:1. Department of Chemistry , University of Cincinnati , Cincinnati , Ohio , 45221;2. Departments of Biological Sciences and Crystallography , University of Pittsburgh , Pittsburgh , Pennsylvania , 15260
Abstract:Abstract

A complex consisting of the EcoRI endonuclease site-specifically bound to spin-labeled DNA 26mers was prepared to provide a model system for studying possible conformational changes resulting from protein binding. EPR was used to monitor the mobility of the spin labels that were strategically placed in position 6, 9, or 11 with respect to the dyad axis of the 26mer. These positions are located within the flanking region on either side of the EcoRI hexamer binding site. This allows the monitoring of potential distal structural changes in the DNA helix caused by protein binding. The spectral line shapes indicate that the spin label closest to the EcoRI endonuclease binding site, i.e., in position 6, is most influenced by the binding event. The EPR data are analyzed according to a model that distinguishes between spectral effects due to a change in the hydrodynamic shape of the complex and those resulting from local variations in the spin-label mobility as characterized by a local order parameter S. S reflecting the motional restriction of the spin-labeled base is 0.20 ± 0.01 for all three oligomers as well as for the two complexes with the label in position 9 or 11, while the position 6 labeled complex yields S=0.25. To further evaluate the origin of the slightly larger EPR effect observed with position 6 labeled material, molecular dynamics (MD) simulations were used to explore the space accessible to the probes in positions 6, 9, and 11. MD results gave similar nitroxide trajectories for all three labeled 26mers in the absence or presence of EcoRI. Thus, the small position 6 effect is attributed to a structural distortion in the major groove of the DNA at this location possibly corresponding to a bend induced by protein binding. The observation that the spectral changes are small indicates the absence of any significant structural disruption being propagated along the helix as a result of protein binding. Also, the fact that the line shape of the 26mers did not change as expected from hydrodynamic theory in view of the significant increase in molecular volume upon protein binding suggests that there are additional relaxation processes involving the protein and nucleic acid.
Keywords:Evolution of triplet code  Ancient binary alphabet of proteins  mRNA hairpins  Repertoire of ancient mRNA  Earliest mini-genes  Earliest mRNA  Computational sequence analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号