首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular Dynamics Simulation of 7, 8-dihydro-8-Oxoguanine DNA
Authors:Hisashi Ishida
Institution:Center for Promotion of Computational Science and Engineering , Japan Atomic Energy Research Institute , 2-2-54 Nakameguro, Meguro-ku, Tokyo , 153-0061 , Japan
Abstract:Abstract

To elucidate the effect of guanine lesion produced by the oxidative damage on DNA, 1 nanosecond molecular dynamics simulations of native and oxidized DNA were performed. The target DNA molecules are dodecamer duplex d(CGCGAATTCGCG)2 and its derivative duplex d(C1G2C3(8-oxoG)4A5A6T7T8C9G10C11G12)·d(C13G14C15G16A17A18T19T20C21G22C23G24), which has one oxidized guanine, 7, 8-dihydro-8-oxoguanine (8-oxoG), at the fourth position. The local structural change due to the lesion of 8-oxoG and the global dynamic structure of the 8-oxoG DNA were studied. It was found that the 8-oxoG DNA remained structurally stable during the simulation due to newly produced hydrogen bonds around the (8-oxoG)4 residue. However, there were distinguishable differences in structural parameters and dynamic property in the 8-oxoG DNA. The conformation around the (8- oxoG)4 residue departed from the usual conformation of native DNA and took an unique conformation of ?-ζ in BII conformation and χ in high anti orientation at the (8-oxoG)4 residue, and adopted a very low helical twist angle at the C3:G22—(8-oxoG)4:C21 step. Further analysis by principal component analysis indicated that the formation of the hydrogen bonds around the (8-oxoG)4 residue plays a role as a trigger for the conformational transition of the 8-oxoG DNA in the conformational space.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号