首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structure and function of hemoglobin variants at an internal hydrophobic site: consequences of mutations at the beta 27 (B9) position
Authors:Y Huang  J Pagnier  P Magne  F Baklouti  J Kister  J Delaunay  C Poyart  G Fermi  M F Perutz
Institution:Institut National de la Santé et de la Recherche Médicale, H?pital de Bicêtre, Le Kremlin-Bicêtre, France.
Abstract:We have studied the structure-function relationships in newly discovered hemoglobin (Hb) mutants with substitutions occurring at the tight and highly hydrophobic cluster between the B and G helices in the beta chains, namely, Hb Knossos or beta A27S and Hb Grange-Blanche or beta A27V. The beta A27S mutant has a 50% decrease in oxygen affinity relative to native human Hb A, while the beta A27V mutant has an increased oxygen affinity. We have also engineered the artificial beta A27T mutation through site-directed mutagenesis. This new mutant exhibits functional properties similar to those of Hb A. None of these mutants is unstable. X-ray analyses show that the substitution of Val for Ala may reduce the relative stability of the T structure of the molecule through packing effects in the beta chains; for the beta A27S mutant a new hydrogen bond between serine and the carbonyl O at beta 23 (B5) Val is observed and is likely to increase the relative stability of the T structure in the mutant hemoglobin. However, no significant changes in the crystals were observed for these mutants between the quaternary R and T structures relative to native Hb A. We conclude that small tertiary structural changes in the tight hydrophobic B-G helix interface are sufficient to induce functional abnormalities resulting in either low or high intrinsic oxygen affinities.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号