首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Anaerobic degradation of monoaromatic hydrocarbons
Authors:R?Chakraborty  Email author" target="_blank">J?D?CoatesEmail author
Institution:(1) Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
Abstract:Over the last two decades significant advances have been made in our understanding of the anaerobic biodegradability of monoaromatic hydrocarbons. It is now known that compounds such as benzene, toluene, ethylbenzene, and all three xylene isomers can be biodegraded in the absence of oxygen by a broad diversity of organisms. These compounds have been shown to serve as carbon and energy sources for bacteria growing phototrophically, or respiratorily with nitrate, manganese, ferric iron, sulfate, or carbon dioxide as the sole electron acceptor. In addition, it has also been recently shown that complete degradation of monoaromatic hydrocarbons can also be coupled to the respiration of oxyanions of chlorine such as perchlorate or chlorate, or to the reduction of the quinone moieties of humic substances. Many pure cultures of hydrocarbon-degrading anaerobes now exist and some novel biochemical and genetic pathways have been identified. In general, a fumarate addition reaction is used as the initial activation step of the catabolic process of the corresponding monoaromatic hydrocarbon compounds. However, other reactions may alternatively be involved depending on the electron acceptor utilized or the compound being degraded. In the case of toluene, fumarate addition to the methyl group mediated by benzylsuccinate synthase appears to be the universal mechanism of activation and is now known to be utilized by anoxygenic phototrophs, nitrate-reducing, Fe(III)-reducing, sulfate-reducing, and methanogenic cultures. Many of these biochemical pathways produce unique extracellular intermediates that can be utilized as biomarkers for the monitoring of hydrocarbon degradation in anaerobic natural environments.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号