首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The ubiquitin-specific protease UBP14 is essential for early embryo development in Arabidopsis thaliana
Authors:Doelling J H  Yan N  Kurepa J  Walker J  Vierstra R D
Institution:The Cellular and Molecular Biology Program and Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA.
Abstract:The ubiquitin/26S proteasome pathway is a major route for selectively degrading cytoplasmic and nuclear proteins in eukaryotes. In this pathway, chains of ubiquitins become attached to short-lived proteins, signalling recognition and breakdown of the modified protein by the 26S proteasome. During or following target degradation, the attached multi-ubiquitin chains are released and subsequently disassembled by ubiquitin-specific proteases (UBPs) to regenerate free ubiquitin monomers for re-use. Here, we describe Arabidopsis thaliana UBP14 that may participate in this recycling process. Its amino acid sequence is most similar to yeast UBP14 and its orthologues, human IsoT1-3 and Dictyostelium UbpA, and it can functionally replace yeast UBP14 in a ubp14Delta mutant. Like its orthologues, AtUBP14 can disassemble multi-ubiquitin chains linked internally via epsilon-amino isopeptide bonds using Lys48 and can process some, but not all, translational fusions of ubiquitin linked via alpha-amino peptide bonds. However, unlike its yeast and Dictyostelium orthologues, AtUBP14 is essential in Arabidopsis. T-DNA insertion mutations in the single gene that encodes AtUBP14 cause an embryonic lethal phenotype, with the homozygous embryos arresting at the globular stage. The arrested seeds have substantially increased levels of multi-ubiquitin chains, indicative of a defect in ubiquitin recycling. Taken together, the data demonstrate an essential role for the ubiquitin/26S proteasome pathway in general and for AtUBP14 in particular during early plant development.
Keywords:ubiquitin  ubiquitin-specific protease  protein degradation              Arabidopsis            26S proteasome
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号