首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Gas dispersion in volume-cycled tube flow. I. Theory.
Authors:D Elad  D Halpern  J B Grotberg
Institution:Biomedical Engineering Department, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208.
Abstract:A mathematical theory is derived for the dispersion of a contaminant bolus introduced into a fully developed volume-cycled oscillatory pipe flow. The convection-diffusion equation is solved for a tracer gas bolus by expressing the local concentration field as a series expansion of derivatives of the area-averaged concentration. The local, as well as the area-averaged, concentration is determined for a uniform initial slug or Gaussian bolus. The effect of various flow parameters such as Womersley parameter, Schmidt number, and tidal volume is investigated. The overall dispersion is characterized by a time-averaged effective diffusion coefficient, which for long duration coincides with previous dispersion theories based on a constant linear axial concentration profile. The effective diffusion coefficient can be determined from the local time history of concentration, independent of the spatial location or the initial tracer bolus. Furthermore the local peaks of the concentration-time curve follow a decaying curve dictated by the time-averaged effective diffusion coefficient. Thus the theory is directly applicable for dispersion measurements in oscillatory tube flows, a basis for the pulmonary airways application, as shown by Gaver et al. (J. Appl. Physiol. 72: 321-331, 1992).
Keywords:
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》浏览原始摘要信息
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号