首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Enamel dictates whole tooth deformation: A finite element model study validated by a metrology method
Authors:Meir M Barak  Selly Geiger  Netta Lev-Tov Chattah  Ron Shahar  Steve Weiner
Institution:aDepartment of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel;bMaurice and Gabriela Goldschlegger School of Dental Medicine, Department of Oral Rehabilitation, Tel-Aviv University, Israel;cKoret School of Veterinary Medicine, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
Abstract:In order to understand whole tooth behavior under load the biomechanical role of enamel and dentin has to be determined. We approach this question by comparing the deformation pattern and stiffness of intact teeth under load with the deformation pattern and stiffness of the same teeth after the enamel has been mechanically compromised by introducing a defect. FE models of intact human premolars, based on high resolution micro-CT scans, were generated and validated by in vitro electronic speckle pattern interferometry (ESPI) experiments. Once a valid FE model was established, we exploit the flexibility of the FE model to gain more insight into whole tooth function. Results show that the enamel cap is an intrinsically stiff biological structure and its morphology dictates the way a whole tooth will mechanically behave under load. The mechanical properties of the enamel cap were sufficient to mechanically maintain almost its entire stiffness function under load even when a small defect (cavity simulating caries) was introduced into its structure and breached the crown integrity. We conclude that for the most part, that enamel and not dentin dictates the mechanical behavior of the whole tooth.
Keywords:Enamel  Tooth  Stiffness  Mechanical properties  ESPI  FEA
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号