首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Photooxidation and light-induced transport of phenazine methosulfate in chromatophores of purple bacteria
Authors:A A Bulychev  N P Grishanova  A K Karagulian  A A Kononenko  G A Kurella
Abstract:The light-induced interaction of phenazine methosulfate (PMS) with chromatophores of the purple bacteria Rhodospirillum rubrum and Rhodopseudomonas sphaeroides was studied, using an ion-specific electrode. Illumination caused an initial rapid increase in the concentration of methylphenazinium cation (MP+) and a subsequent slow (1-3 min) decrease of the MP+ concentration to a low steady level. The rapid phase of the light-induced MP+ concentration change is specifically enhanced by ascorbate. The slow phase (uptake of MP+ from the medium) is stimulated on addition of valinomycin, which is known to collapse the membrane potential of energized chromatophores, and is partly inhibited by NH4Cl, which enhances the membrane potential in chromatophores. The light-induced uptake of MP+ is sharply stimulated by dibromothymoquinone. It is concluded that the initial rapid increase of the MP+ concentration in the outer medium results from the oxidation of the reduced PMS by photooxidized reaction centers. The slow decrease of the external MP+ concentration is due to active transport of MP+ into the internal space of the chromatophores via a mechanism of a chemiosmotic type. The accumulation of MP+ is directly mediated by the redox reactions of PMS at the outer and inner surfaces of the photosynthetic membrane, which are involved in cyclic electron transport.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号